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The intact Amazon rainforest acts as a substantial carbon (C) 
sink that completely offsets the carbon dioxide (CO2) emis-
sions from fossil fuel combustion and land use change in the 

Amazon region1,2. Increasing atmospheric CO2 concentrations from 
anthropogenic activity may be the primary factor for the current 
Amazon net C sink1,3, via so-called CO2 fertilization (an increase 
in photosynthetic C uptake by plants under a higher CO2), which is 
projected to continue into the future by global models4–6. The CO2 
fertilization effect has been observed in field experiments that were 
conducted predominantly in the temperate zone. In these experi-
ments, the elevated carbon dioxide (eCO2)-induced increase in C 
uptake was generally low when other factors, such as soil nitrogen 
(N), were limiting7–9. So far, whole-ecosystem-scale experiments, 

that is, free-air CO2 enrichment (FACE) experiments, have not been 
conducted in the tropics10,11.

Over large parts of the Amazon and the tropics worldwide, phos-
phorus (P), not N, is assumed to be the key limiting nutrient, as 
most P has been lost or occluded from plant uptake during millions 
of years of soil pedogenesis12,13. Forests that grow on these highly 
weathered old soils may nonetheless be highly productive due to 
the evolution of multiple strategies for P acquisition and use, which 
enable a tight cycling of P between plants, microorganisms and 
soils14,15. Despite this knowledge, to quantify the control of P on 
plant physiology, growth and plant–soil–microbial interactions in 
global models, and hence its role in the forests’ responses to eCO2, 
remains a challenge16,17. This challenge is exacerbated by the scarcity 
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Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, pri-
marily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the 
Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model 
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of observations and distinctive plant species responses in hyperdi-
verse tropical forests18.

Predicted nutrient feedbacks to eCO2 for AmazonFACE
Here we study the potential interactions between eCO2 and nutrient 
(N and P) feedbacks in a mature Amazonian rainforest by simu-
lating the planned AmazonFACE experiment (+200 ppm; https://
amazonface.inpa.gov.br/) with an ensemble of ecosystem models 
(n = 14 (the model details are given in Supplementary Table 3)), 
which includes three C, five carbon–nitrogen (CN) and six carbon–
nitrogen–phosphorus (CNP) models19–24. The AmazonFACE exper-
iment is located in a well-studied, highly productive tropical forest 
in Central Amazonia25,26, which grows on a strongly weathered terra 
firme ferralsol. This ecosystem represents the low end of the plant-
available P spectrum in the Amazon, consistent with ~32% of the 
Amazon rainforest’s cover fraction27. In  situ measurements were 
used to parameterize the models and to evaluate simulated ambient 
conditions (Supplementary Tables 1 and 2). Our aim was to gener-
ate a priori model-based hypotheses to highlight the current state 
of knowledge and guide measurement strategies for AmazonFACE 
and other ecosystem manipulation experiments to gain crucial pro-
cess understanding of P control on the CO2 fertilization effect.

Simulated eCO2 (+200 ppm) had a positive effect on plant bio-
mass C across all the models, but was weakest in the CNP models 
(Fig. 1a). The eCO2 conditions induced average biomass C gains of 
163 ± 65, 145 ± 83 and 79 ± 63 g C m−2 yr−1 (mean ± s.d.) over 15 years 
in the C, CN and CNP models, respectively (Fig. 1a). Limitations by 
P thus reduced the predicted biomass C sink by 52 and 46% com-
pared to that in the C and CN models, respectively, with considerable 
variation across and within model groups (Supplementary Fig. 1).  
Plot inventories at the AmazonFACE site during the 2000s indicate 
an above-ground biomass increment of 23 g C m2 yr−1, substantially 
below the Amazon-wide1 estimate of 64 g C m2 yr−1. The model 
ensemble represents ambient conditions, such as productivity and 
leaf area index, reasonably well, but ensemble members show diver-
gence in other ecosystem characteristics, such as the biomass C 
increment, which range from 5 to 114 g C m2 yr−1. There is, however, 
no clear pattern in performance between the model groups, so that 
we judge that these differences do not have a bearing on the conclu-
sions of our study (further discussion in Supplementary Fig. 2).

Differing model responses to P limitation
Gross and net primary productivity (GPP and NPP, respectively) are 
both stimulated by eCO2 in all models, both initially (after one year 
of eCO2) and until the end of the simulation. The CNP models show 
the strongest decline from the initial response due to P limitation 
(Fig. 1b,c). The final response of NPP to eCO2 was a 35%, 29% and 
9% stimulation for the C, CN and CNP models, respectively. In gen-
eral, in the CN and CNP models, nutrient limitation is defined as the 
nutrient demand being greater than the nutrient supply. However, 
the models differ in their assumptions on how nutrient limitation 
controls productivity and C allocation in response to eCO2, so that 
divergent responses on plant C use efficiency (CUE = NPP/GPP) 
are simulated (Supplementary Table 3). In some CN models, CUE 
increases because the N limitation is hypothesized to reduce auto-
trophic respiration via a lower tissue N content. Some CNP models, 
however, assume a direct downregulation of growth and hence the 
plant CUE decreases (Supplementary Fig. 3). Elevated CO2 induced 
higher fine root investments of NPP in some CN and CNP models 
to aid nutrient acquisition (Fig. 1c and Supplementary Fig. 4). The 
predicted changes in allocation with eCO2 cause a general increase 
in biomass turnover across all but one of the models, and partially 
offset the positive biomass response (Supplementary Table 4). 
Changes in turnover play a minor role in our 15 year simulation 
period, but rather control the long-term future CO2 effect on the 
biomass C sink28,29.

Plant growth under eCO2 is lowest in the CNP models as the low 
availability of soil labile P restricts P uptake either immediately or 
over time (Supplementary Fig. 5). We considered the modelled P 
limitation on plant growth to be realistic, as the models and obser-
vations agree that soil labile P is very low (Supplementary Fig. 2). 
Other site observations support the fact that P is extremely critical 
for plant productivity, such as high leaf N:P ratios of 37 and a high 
plant P resorption (before litter fall) of 78% (Supplementary Table 1). 
Although P limitation consistently reduces the eCO2-induced bio-
mass C sink, there is significant variation among CNP models due 
to contrasting process representations (Fig. 2 and Supplementary 
Table 3). P shortages downregulate growth (that is, NPP) in all the 
CNP models, directly or via photosynthesis. The major differences 
in the model assumptions relate to how they modify P supply and 
demand to alleviate plant P shortages, which include either (1) 
enhancing the plant P use efficiency (PUE = NPP/P uptake) or (2) 
upregulating the P acquisition mechanisms. The models assume 
that PUE may change if the tissue nutrient ratios are flexible, if the 
C allocation changes among tissues with different stoichiometry 
and/or if P resorption is variable (Fig. 2). Flexible stoichiometry is 
considered in all the CNP models except ELM-CTC, although with 
varying degrees of flexibility. A greater fine root C allocation with 
plant P stress is considered in some, and P resorption is a fixed frac-
tion of leaf tissue P in all the models (Fig. 2).

The CNP models differ in their representation of soil P acquisi-
tion mechanisms; three of the six models (ELM-ECA, ELM-CTC 
and GDAY) consider the desorption of P from mineral surfaces 
(that is, the secondary or strongly sorbed P pool), whereas the others 
assume P in these pools to be unavailable to plants. All the models 
include the biochemical mineralization of organic P via phospha-
tase, but only three (ELM-ECA, ELM-CTC and ORCHIDEE) 
include the functionality to increase the P acquisition via this 
mechanism under plant P stress (Fig. 2 and Supplementary Table 3).  
Litter and soil stoichiometry are considered with varying degrees of 
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Fig. 1 | The predicted effect of eCO2 on biomass C, productivity and 
biomass compartments for C, CN and CNP models. a, The final response 
of biomass growth, calculated as the mean annual response over 15 years 
of eCO2. b, The first-year response of productivity (GPP and NPP) and CUE. 
c, The 15-year response of productivity, CUE and leaf, fine root and wood 
C (calculated as the mean response of the 13th to 17th years). Responses 
to eCO2 are the differences between the elevated and ambient model run, 
shown as mean and s.d. (black lines) per model group, with individual 
model results as dots.
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flexibility. Soil labile P limits the microbial decomposition rates of 
litter and soil, so that decomposition is reduced when immobiliza-
tion demands for P exceed the soil labile P availability (Fig. 2 and 
Supplementary Table 3).

Enhanced PuE and acquisition due to eCO2
Diverging representations of plant P use and acquisition among 
the CNP models cause predictions of the eCO2-induced biomass 
C sink to range from 5 g C m−2 yr−1 to 140 g C m−2 yr−1 (Fig. 3a and 
Supplementary Fig. 1). Greater plant PUE occurred in four of the 
models, for which shifts in tissue C:N and N:P ratios due to eCO2 led 
to increases in biomass C:P that ranged from ~200 to 1,600 g C g P−1 
(Fig. 3c). A higher fine root investment with eCO2, at the expense of 
less ‘P-costly’ wood, offset some increases in PUE in some models 
(Fig. 3b). A flexible biomass stoichiometry altered the decomposi-
tion dynamics and induced progressive P limitation in response to 
eCO2, that is, the litter stoichiometry shifted towards a lower quality 
(less N and P in relation to C), which reduces the net P mineraliza-
tion rates from microbial decomposition and so causes P to become 
increasingly unavailable to plants and accumulating in soil organic 
matter (Fig. 3d,e). This plant–soil–microbial feedback slowed the 
cycling of P in the ecosystem and exacerbated the initial P limitation 
(Vitousek30 reports a similar feedback during pedogenesis).

Enhanced plant P acquisition under eCO2 effectively alleviated the 
plant P limitation in two CNP models (ELM-CTC and ELM-ECA) 
(Fig. 3e). In both, eCO2 increased the liberation of P from the second-
ary pool, as a higher plant P demand and uptake diminished the labile 
P pool, which in turn caused higher desorption rates. P desorption is 
thus only indirectly, and not mechanistically, enhanced by plants in 
these models. Biochemical mineralization of organic P under eCO2 
responded positively in both of the models, but added only notably 
to additional P acquisition in ELM-CTC (Fig. 3e). Although three of 

the CNP models simulated higher fine root investments, the actual P 
uptake return per fine root increment was marginal or came only into 
effect in the long term (Supplementary Fig. 6).

Observations document ample N cycling in the system, for exam-
ple, high leaf N contents, indicative δ15N values, high rates of N oxide 
emissions and low leaf N resorption31,32, and thereby suggest that plant 
growth is not directly affected by N availability. The CN models, how-
ever, simulate an increased N use efficiency and biomass C:N ratios 
in response to insufficient N uptake under eCO2 (Supplementary  
Fig. 5). Plant N availability may be underestimated in the models 
because the plant-available mineral N supply was <7 g N m−2 across 
all the models, as opposed to 17.5 g N m−2 observed in the top 10 cm 
alone (Supplementary Fig. 2). These results highlight an important 
gap in our knowledge that relates to the dynamics of tropical N 
cycling and its potential interaction with P dynamics (Table 1).

Model-based hypotheses for the AmazonFACE experiment
In summary, the model ensemble encapsulates a range of plausible 
hypotheses and represents a potential range of biomass C responses 
to eCO2 under a low soil P availability. The assumption of a lacking 
ability of plants to acquire more soil P and a limited capacity for 
plants to use P more efficiently resulted in an effectively zero biomass 
C gain with eCO2. Conversely, flexible stoichiometry, in combina-
tion with an enhanced plant P acquisition, were the key mechanistic 
responses that led to biomass C gain with eCO2. Divergences in the 
simulated eCO2 response lead us to the following testable hypoth-
eses, and call for directed field measurements (Table 1):

•	 H1: low soil P availability will strongly constrain the future plant 
biomass growth response to eCO2 either by downregulating 
photosynthesis or limiting plant growth directly, or a combina-
tion thereof.
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Fig. 2 | Strength of P feedbacks in controlling the biomass C response to eCO2 for the six CNP models. The degree to which the modelled P feedback 
on ecosystem processes controls the response of biomass C to eCO2 in our simulations (none, intermediate and high). P limitation downregulates 
photosynthesis or growth under eCO2 in all the models. Maintenance respiration, leaf turnover and P resorption are not controlled by the P cycle in any of 
the models. The leaf N:P ratio responds to eCO2 in most of the models. The desorption of P from mineral surfaces is considered only in ELM-ECA and  
ELM-CTC, and biochemical P mineralization is considered in many of the models, but effectively responsive only in ELM-CTC (Supplementary Table 3). 
SOM, soil organic matter.
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•	 H2: despite the limited soil P supply, plasticity in vegetation stoi-
chiometry and allocation patterns will allow for some biomass 
growth under eCO2.

•	 H3: plants will increase investments in P acquisition to increase 
P supply and allow biomass growth under eCO2 either via a 
greater P interception through fine root production or via a 
greater P liberation from P desorption or the biochemical min-
eralization of organic P.

These model-based hypotheses deepen a previous analysis of 
potential N and P limitation on terrestrial C accumulation based 
on mass balance principle33. Furthermore, we add to a model inter-
comparison carried out in advance of the EucFACE experiment34 
by extending the range of plant P feedbacks considered across 
CNP models. This work highlights H1: two stoichiometrically con-
strained CNP models predicted that a strong P limitation will cur-
tail the growth response to eCO2 in Australia. Consistent with this 
hypothesis, above-ground growth has not increased with eCO2 in 
that experiment over the initial years35. This finding underlines that 
monitoring efforts need to place a strong(er) focus on below-ground 
C and nutrient dynamics, in addition to canopy-scale photosynthesis 
and above-ground growth dynamics. Additionally, the autotrophic 
respiration dependence on P content and plant stress from drought 
or nutrient limitation needs further monitoring during experiments 
to fully elucidate the plant C budget and address H1 (Table 1).

Nutrient fertilization experiments support H2, as plasticity in leaf 
stoichiometry at the individual level, along with plasticity in P resorp-
tion, was observed36. Across the Amazon, community-weighted  

leaf N:P ratios in the field varied from 13 to 42 g N g P−1 (n = 64)32, 
which place our site, with a mean of 37, closer to the high end. 
GDAY predicted the most plausible increase in the leaf N:P ratio 
from 34 to 38 (Supplementary Fig. 7). Two models predicted strong 
increases in the leaf N:P ratio with eCO2, but began with much lower 
initial values. The degree to which plasticity in stoichiometry and 
resorption can aid plant PUE under eCO2 in highly P-limited sites 
that are already at the end of the observed spectrum remains to be 
seen (H2). Monitoring plant-tissue stoichiometry, which includes 
wood with much higher N:P ratios, combined with assessments of 
the P resorption in CO2 and nutrient fertilization experiments, will 
reduce the uncertainties (Table 1).

Based on previous observations8, a number of models assume 
an increased fine root investment, as well as higher biochemi-
cal P mineralization and P desorption from mineral surfaces, 
under an eCO2-induced nutrient limitation (H3). The effect of 
an increased fine root biomass on nutrient uptake was limited 
in our simulations and the ambient fine root allocation fractions 
were highly variable among the models, ranging from 5 to 30% of 
NPP (Supplementary Figs. 4 and 6). Both these modelled results 
highlight the model deficiencies in below-ground processes37 that 
need addressing (Table 1). There is evidence that phosphatase 
activity in the litter and soil and the presence of low-molecular-
weight acids used to liberate P from organic matter or from min-
eral surfaces increase with plant P demand38. This was predicted 
by ELM-CTC in our simulations, which also showed Amazon-
wide that with “enhanced phosphatase production, productiv-
ity in the highly P-limited areas can be sustained under elevated 
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Fig. 3 | Key responses of biomass C gain, stoichiometry, allocation and P dynamics to eCO2 for the CNP models. Blue denotes a positive response; red 
denotes a negative response. a, Mean annual change in standing leaf, fine root and wood C over 15 years (g C m–2 yr–1), which increases across the models 
from left to right (CABLE, GDAY, ELM-CTC, CABLE-POP, ELM-ECA, and ORCHIDEE). b, The mean change in C allocation for fine roots and wood (%). c, 
Mean change in tissue stoichiometry in absolute terms (g C g P−1) and change in PUE over 15 years (g C g P−1 yr−1). d, The P ecosystem retention in terms of 
the mean change in the ecosystem P input and output (leaching) fluxes (g P m−2 yr−1) and in the final P stock in the biomass, organic soil, mineral soil and 
total ecosystem (g P m−2). e, Mean change in plant P acquisition processes, namely net P mineralization (min), biochemical (bioch) P mineralization, and P 
uptake (g P m−2 yr−1), and in the secondary and labile P pools (g P m−2). For both d and e, the P flux changes are differences in the cumulative fluxes after 15 
years and the P pool changes are differences in pools after 15 years.
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CO2 conditions”39. Plants invest in P liberation and acquisition, 
but whether these mechanisms can be upregulated under eCO2 
and over what time frame this may occur remain open questions. 
Quantification of such a response is lacking, as are estimates of 
the associated plant C costs to acquire P via these and other mech-
anisms, such as mycorrhizal symbiosis15,40 (Table 1). The P gain 
and C cost for P acquisition mechanisms, as well as the associated 
plant–soil–microbial interactions, need to be assessed by analyses 
of soil, microbial and root nutrition, and via novel techniques to 
investigate enzyme and labile C dynamics41. Monitoring of below-
ground fine root dynamics needs to include the surface litter layer, 
commonly explored by fine roots in P-impoverished ecosystems 
in the Amazon, but not yet quantified nor considered in ecosys-
tem models (Table 1).

implications of P control on the CO2 fertilization effect
Previous model projections suggest a sustained fertilization effect of 
eCO2 on the Amazon C sink, but did not consider feedbacks from a 

low soil P availability across much of the Amazon basin5,6. Our study 
demonstrates that, based on the current generation of CNP models, 
the omission of P feedbacks is highly likely to cause an overestima-
tion of the Amazon rainforest’s capacity to sequester atmospheric 
CO2. Considering the P limitation on the CO2 fertilization effect 
in future predictions may indicate that the forest is less resilient to 
higher temperatures and changing rainfall patterns than previously 
thought6,42. Periods of water deficit may contribute to the eCO2 fer-
tilization effect on productivity due to its water-saving effect34, or 
due to alterations of the decomposition processes. Our study site 
experienced years with significantly less than average precipitation, 
for example, in 2000 and 2009; however, in our simulations this only 
marginally increased the positive response of GPP and NPP to eCO2 
(Supplementary Figs. 8 and 9). Models lack the appropriate sensitiv-
ity for plant responses to changes in water availability, and even more 
so when precipitation sums are high43. Interactions of water and P 
availability and their consequences on the CO2 fertilization effect 
remain uncertain44 and so this is an area in which field measure-
ments will allow us to better constrain model responses (Table 1).

Although P is likely to reduce the biomass C sink response to CO2 
in regions with a low plant-available P supply, our results suggest that 
plasticity in plant P use and plant P acquisition mechanisms may, at 
least partially, alleviate the P limitation under eCO2 and enable the 
CO2 fertilization of biomass growth. The model ensemble may be 
interpreted as representing a range of possible tropical plant func-
tional strategies and growth responses to a low P availability under 
eCO2. Responses are expected to be species-specific, as were plant 
growth responses to low P supplies in another tropical region18. The 
ecosystem-scale response to P limitation under eCO2 thus depends on 
the relative contributions of the various P acquisition and P use strate-
gies across individuals, their interactions and to what extent these pro-
cesses can be upregulated under eCO2. All these ultimately need to be 
described and represented in a single model framework to accurately 
predict the Amazon rainforest’s response to future climate change.

AmazonFACE has the unique opportunity to experimentally 
address these key areas of uncertainty, not only by integrating the 
proposed measurements across the seasons and at the ecosystem 
scale (summary in Table 1) but also by assessing species-specific 
responses to eCO2 in relation to trait expression. An Amazon-wide 
expression of plant functional strategies may then be inferred by 
applying the mechanistic interplay between trait expression and 
edaphic conditions. The key to predicting the future of the world’s 
largest tropical forest under climate change and eCO2 thus lies in 
obtaining experimental data on, and subsequently modelling, dif-
ferent plant P acquisition and use strategies and their interactions in 
a competing plant community.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41561-019-0404-9.
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Table 1 | Key processes and variables requiring observational 
estimates to reduce uncertainty in P cycle control on eCO2 
effects in ecosystem models

Process Measurements needed

H1, Plant C budget
Canopy scale C 
assimilation

Seasonal dynamics of leaf area and 
photosynthetic capacity
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Methods
Site description. Model simulations were conducted at the AmazonFACE 
experimental site in Central Amazonia (2° 35′ 39′ S, 60° 12′ 29′ W). AmazonFACE 
is an integrated model–experiment project that aims to assess the effects of high 
CO2 concentrations on the ecology and resilience of the Amazon rainforest 
(https://amazonface.inpa.gov.br/). The experiment is currently being established 
and is situated in a terra firme forest on a plateau characterized by a highly 
weathered, deep, clay sediment soil (with a clay fraction of 76%), classified as 
a geric ferralsol45. The site and the surrounding area have been subjected to 
various long-term measurement activities25,46–49, coordinated by the Large-Scale 
Biosphere–Atmosphere Program (http://lba2.inpa.gov.br/) in Amazonia, and 
includes the ‘K34’ eddy covariance flux tower26, located approximately 2 km from 
the AmazonFACE site. The mean annual precipitation at K34 from January 2000 to 
December 2015 was 2,600 mm yr−1, and the mean temperature was 26 °C.

Model descriptions. Fourteen ecosystem models with contrasting representations 
of ecosystem functioning and nutrient cycling were applied to the experiment 
(Supplementary Table 3). C cycle dynamics without nutrient cycle feedbacks are 
represented in the C-only models (InLand, ED2 and ELM-FATES)50–52, C and N 
dynamics are represented in the CN models (LPJ-GUESS, O-CN, JULES, CABLE-
POP(CN) and GDAY(CN))53–55 and C, N and P dynamics are represented in the 
CNP models (ELM-ECA, ELM-CTC, CABLE, CABLE-POP, ORCHIDEE and 
GDAY)19–24. Two models were included with a respective CN and CNP version 
(GDAY and CABLE-POP) to assess directly the effect of considering P dynamics. 
The other models were treated as a non-random sample from the possible C, CN 
and CNP modelling assumptions. Four of the models are dynamic vegetation 
models: CABLE-POP considers the dynamic establishment and mortality with a 
fixed plant functional type composition, and LPJ-GUESS, ED2 and ELM-FATES 
also consider dynamic plant functional type composition. Photosynthesis is based 
on formulations by Farquhar et al.56 or derivations thereof in all the models57,58 
(Supplementary Table 3).

Prognostic C allocation fractions are based on functional relationships among 
the tissues, for example, fixed ratios between sapwood and leaf area in CABLE-
POP, LPJ-GUESS, ED2, GDAY, ORCHIDEE, O-CN, JULES and ELM-FATES, 
and on resource dependence, for example, higher root allocation under water or 
nutrient stress in LPJ-GUESS, ELM-ECA, GDAY, O-CN, ORCHIDEE, ED2 and 
ELM-FATES. C allocation fractions are fixed in InLand and CABLE.

Nutrient limitation is determined by the difference between demand and 
supply (via root uptake and resorption) of N or P, with the most limiting nutrient 
determining the degree of limitation. The photosynthetic parameters Vcmax and/or 
Jmax are controlled by the leaf N in all the CN and CNP models except JULES, and 
leaf P additionally downregulates GPP in all the CNP models except ORCHIDEE. 
N controls the NPP in some of the models, namely, O-CN, JULES, ORCHIDEE, 
CABLE and CABLE-POP, and additionally downregulates growth efficiency  
(GPP/leaf area index) in CABLE and CABLE-POP.

Maintenance respiration is dependent on the temperature in all the models and 
is additionally controlled by the tissue N content in all the models that consider 
the N cycle with the exception of GDAY, in which autotrophic respiration is a 
fixed fraction of GPP. Plant tissue stoichiometry in the CN and CNP models is 
either fixed (ELM-CTC and JULES) or varies within or without bounds (all the 
other models). The nutrient resorption rates in the CN and CNP models are 
always fixed fractions of the nutrient content in leaves and roots. Competition for 
nutrients between plant uptake and decomposition processes is handled differently. 
Nutritional demands for the decomposition process (which represents microbial 
demands) are first met entirely in some models (CABLE, O-CN, ORCHIDEE and 
GDAY), are based on relative demands between decomposition and plant uptake 
(ELM-CTC) or are determined via a multiple consumer approach, which includes 
adsorption to mineral surfaces (ELM-ECA). Nutrient uptake is a function of plant 
demand and nutrient availability in all the models and is further controlled by a 
measure of the root mass in LPJ-GUESS, GDAY, ORCHIDEE and O-CN.

Soil organic matter (SOM) decomposition is limited by soil mineral N 
availability in most CN and CNP models (except O-CN and ORCHIDEE) and 
additionally by labile P availability in most CNP models (except GDAY and 
ORCHIDEE). P in SOM can also be mineralized via phosphatase, decoupling 
the P cycle from the C and N cycle, termed biochemical P mineralization in 
the P models. Biochemical P mineralization is a function of the slow SOM pool 
turnover in CABLE, CABLE-POP and GDAY, as well as substrate availability 
in ORCHIDEE, ELM-ECA and ELM-CTC. Biochemical P mineralization is 
upregulated with higher plant P stress, representing higher phosphate production 
(not specified if by plants or microbes), in ELM-ECA, ELM-CTC and ORCHIDEE.

N inputs originate from N deposition (prescribed by model protocol) and N 
fixation (prescribed individually). N fixation is either fixed, calculated empirically 
as a fraction of NPP or evapotranspiration (GDAY, JULES, ORCHIDEE, ELM-
CTC, LPJ-GUESS, CABLE, and CABLE-POP), or based on an optimization 
scheme (ELM-ECA and O-CN). P inputs originate from weathering (prescribed 
individually) and deposition (prescribed by model protocol). Release of P from 
rock weathering is a fixed, soil type-specific rate in CABLE and CABLE-POP, a 
function of the parent P pool in ELM-ECA, ELM-CTC, and GDAY or described 
as a function of lithology, runoff and air temperature in ORCHIDEE. N and P 

losses occur from leaching, modelled as a function of the size of the labile P and 
mineral N pool, respectively, and additionally controlled by runoff in ELM-ECA 
and ORCHIDEE.

The number of inorganic P pools and their precise definition varies among 
the models. We consider two inorganic P pools relevant for our analysis: the labile 
P pool and the secondary P pool. The labile P pool encompasses plant-available 
inorganic P, represented in most CNP models by two separate pools connected 
by sorption dynamics and effectively in equilibrium (described by Langmuir 
dynamics in most models and a linear approach in ORCHIDEE). The labile P pools 
follow different nomenclature in the models but are comparable in functionality: 
the P in soil solution (called labile or solution P) is readily available to plants in 
the model time step, whereas the non-dissolved P (referred to as sorbed or sorbed 
labile P pool) can become available to plants on yearly-to-decadal timescales due to 
desorption. The secondary P pool represents P strongly sorbed by minerals, which 
is largely unavailable but may enter the labile P pool on centennial timescales and, 
depending on the model assumptions, may be driven by plant P stress.

Model simulations. The models were forced with 16 years of observed local 
meteorology (2000 to 2015) from the K34 flux tower26. Meteorological data from 
July 1999 to December 2015 of near-surface air temperature, rainfall, downward 
shortwave radiation, downward longwave radiation, vapour pressure deficit, 
surface pressure, relative humidity and wind speed were available for the model 
input. Specific humidity was calculated based on the observed relative humidity 
and surface pressure. All the data time series were subject to quality control (that 
is, removal of outliers) and gap filling using the variables’ climatological mean. 
Precipitation data gaps were filled from a nearby weather station of the Tropical 
Rainfall Measuring Mission network.

Simulations were initialized with a spin-up routine that resulted in  
equilibrium conditions of C stocks (and N and P, if applicable) that represented 
the year 1850. The 16-year meteorological time series were continuously repeated 
throughout the whole spin-up, during the transient phase (1851–1998) and 
during our model–experiment phase (1999–2013), representative of a 15-year 
long AmazonFACE experiment. Global data sets were used as the inputs for 
atmospheric CO2 (refs 59,60), N deposition61,62 and P deposition63. Atmospheric 
CO2, N and P deposition levels were set to 284.7 ppm, 1.43 kg N ha−1 yr−1 and 
0.144 kg P ha−1 yr−1, respectively, in 1850 and followed historical changes during  
the transient and model experiment phase.

Other site parameters used for the parameterization of the models were  
derived from in situ measurements and include rooting and soil depth (set to 
rooting depth), soil hydraulic parameters, specific leaf area and soil texture 
(Supplementary Table 2). Soil hydraulic parameters were derived from 
pedotransfer functions64 and site-specific measurements of the soil properties65. 
Soil hydraulic parameters were included in models that accounted for this 
functionality to allow for a better representation of the soil water dynamics  
in tropical soils (Supplementary Table 2).

Two model experiments were performed over the 15-year long experiment 
phase by each model to assess the effect of elevated CO2: (1) the ambient run 
and (2) the elevated CO2 run. In the ambient run, the atmospheric CO2 was 
set to ambient levels and employed for the model evaluation against in situ 
measurements, which included C fluxes from the K34 flux tower. The elevated 
CO2 run represents the planned AmazonFACE experiment with a step change 
increase of 200 ppm at the start of the model experiment and continuous tracking 
of the CO2 levels in the ambient run plus 200 ppm thereafter. Model outputs 
were analysed in biological years of seasonality (July to June) and the differences 
between the elevated CO2 runs and the control runs were used to infer the model-
based CO2 effect.

Model output analysis. The analysis of the modelled output includes an evaluation 
of the modelled ambient conditions relative to in situ observations and hypotheses-
based analyses of the modelled CO2 responses. We employed a structural analysis 
of the model simulations9,66–68 by splitting the model outcomes into the underlying 
processes to identify crucial model assumptions that determine the diverging 
predictions for the FACE experiment. We focus here on the simulated increase in 
biomass C due to eCO2 and the underlying nutrient control thereon.

Biomass C dynamics are a result of primary productivity, C allocation and 
turnover. We first analysed the effect of eCO2 on GPP, NPP, autotrophic respiration 
and the resulting plant CUE. We then assessed changes in the NPP allocation 
fractions to the biomass compartments of wood, fine roots and leaves, and the 
resulting effect on biomass C turnover in response to eCO2. Specific tissue turnover 
rates were fixed in all the models, but the overall biomass C turnover changes as 
a result of changing the C allocation to tissue compartments. The turnover rates 
of biomass C pools were calculated as the fraction of the total litter fall per total 
biomass pool size (Supplementary Table 4).

Plant nutrient cycle feedbacks to eCO2 were assessed by splitting the responses 
into plant N uptake and plant N use efficiency and similarly into plant P uptake 
and PUE. The responses of N use efficiency and PUE to eCO2 were further split 
into changes in tissue C allocation (differing in C:N and N:P ratios) and changes 
in tissue stoichiometry (flexible C:N and N:P ratios). The soil nutrient cycle 
feedbacks to eCO2 were determined by separating eCO2 responses in the N and P 
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mineralization rates (N and P mineralization from the microbial decomposition of 
SOM and the biochemical P mineralization of organic P via phosphatase) and the 
balance of the ecosystem N and P inputs (N fixation, N and P deposition, and P 
weathering) and losses (N and P leaching).

Data availability
Model output data used for the analyses and figures are archived in a GitHub 
repository (https://github.com/Kaaze7/AmzFACE-model-ensemble-2019).

Code availability
Code used for the analyses and figures are archived in a GitHub repository  
(https://github.com/Kaaze7/AmzFACE-model-ensemble-2019).
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