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Comment on “Mycorrhizal
association as a primary control
of the CO2 fertilization effect”
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Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of carbon dioxide (CO2)
enrichment experiments as evidence of an interaction between mycorrhizal symbiosis
and soil nitrogen availability. We challenge their database and biomass as the response
metric and, hence, their recommendation that incorporation of mycorrhizae in models will
improve predictions of terrestrial ecosystem responses to increasing atmospheric CO2.

T
errer et al. (1) use a meta-analytic approach
to test the hypothesis that the type of my-
corrhizal symbiosis interacts with nitrogen
(N) availability to control the extent to which
different ecosystems respond to anthropo-

genic CO2 in the atmosphere. Although we ac-
cept that the hypothesis is worth testing, we
believe that their analysis and conclusions are
flawed, and thus the suggestion to implement
mycorrhizal type as a condition to quantify the
CO2 fertilization effect on the global carbon (C)
cycle within terrestrial biosphere models is pre-
mature. We outline several areas of concern:
1) Their database of CO2 enrichment experi-

ments includes many entries that are not relevant
to the question at hand and that compromise
their analysis. Interactions between C and N
cycles in ecosystems cannot be evaluated from
experimental results of container-grown tree
seedlings in artificial soil [e.g., “Harvard” and
“Basel tropical” in figure S1 of (1)]. In these early
studies, elevated CO2 (eCO2) often stimulated
growth such that the plants became root-bound,
nutrient supplies were exhausted, and plant
growth declined (2). Furthermore, in many of
these seedling studies, there was no evidence of
mycorrhizal colonization. Additional field studies
(3), however, could have been included.
2) Biomass is the incorrect metric for eval-

uating the response of the trees in this analysis.
In the Duke and Oak Ridge National Laboratory
(ORNL) free-air CO2 enrichment (FACE) experi-
ments, about half of the biomass was present
before the start of the experiment and cannot
be considered a response to eCO2. Much more

relevant for evaluating the hypothesis would
be biomass increment or net primary produc-
tivity (4), and in cases of open canopies, leaf-
area normalization is warranted (Fig. 1). Trees
in many of the open-top chamber experiments
in the Terrer et al. analysis were in an exponen-
tial growth phase, which cannot be sustained
in forest ecosystems as leaf area becomes con-
strained. The substantial difference in biomass
response between ectomycorrhizal (ECM) Quer-
cus alba trees and arbuscular mycorrhizal (AM)
Liriodendron tulipifera trees growing in the same
soil can be attributed to the difference in leaf area
deployment of the two species in interaction
with exponential growth (5). When the data are
expressed as growth per unit leaf area, a metric
more representative of growth in a closed-canopy
forest (6), the differences in biomass response
disappear (Fig. 1). Hence, in many of the tree
studies in this analysis, we see no basis for as-
cribing differential responses to mycorrhizal type.

3) Given the structure of the database used
by Terrer et al., the comparison of response to
eCO2 of AM versus ECM plants was dominated
by a comparison of grasses and trees. Any my-
corrhizal effects are inescapably confounded by
substantial differences in morphology, growth
habit, and environmental influences. If mycor-
rhizal type is simply a surrogate for grass versus
tree, we note that differences between these
plant functional types are already accounted for
in models. Terrer et al. did run separate analy-
ses of just trees, but there have been few studies
with AM trees, and many of those in their anal-
ysis were seedling studies that probably should
not have been included. The only field experi-
ments with AM trees in their analysis [figure S1
in (1)] were the open-grown Citrus aurantium
trees in high N soil (Fig. 1) and Liquidambar
styraciflua trees in the ORNL FACE experiment
in low N soil. This is hardly a strong basis for
modeling, or even speculating about, the re-
sponses to eCO2 across AM-dominated tropical
forests, especially when also considering the po-
tentially important interactions between mycor-
rhizae and phosphorus nutrition.
4) The purported interaction between CO2, N,

and mycorrhizal type is based on an assumption
that ECM fungi have a capacity to access N in
soil organic matter, which AM fungi cannot.
Importantly, ECM fungi have independently
and differentially evolved from saprotrophic an-
cestors nearly 80 times (7), and the degree to
which they have retained genes with saprotro-
phic function differs dramatically among them
(8). Hence, it cannot be assumed that all ECMs,
especially those in undersampled regions [e.g.,
tropical South America, Africa, and Southeast
Asia, (9)] have the capacity to access nutrients
in soil organic matter. Furthermore, there has
yet to be a definitive study demonstrating that
ECM fungi actually express genes that medi-
ate organic decay while in symbiotic association
with plants. Therefore, it is incorrect to assume
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Fig. 1. Biomass response
to elevated CO2 of two AM
species and two ECM spe-
cies.The biomass response
to elevated CO2 of two AM
species and two ECM spe-
cies grown in field soil with-
in open-top chambers is
consistent with the pattern
described by Terrer et al.
(1)—i.e., biomass of the ECM
species increased in eCO2

in both high and low N
soil, whereas the AM spe-
cies responded only in high
N soil. However, this pattern
can be attributed to differ-
ences in leaf area develop-
ment and a consequence
of exponential growth,which

cannot be sustained as leaf area becomes constrained in a forest. After normalizing growth to a constant
leaf area, all four species show a similar response to eCO2. [Data source (6)] The Citrus and Quercus
biomass data were used in the Terrer et al. analysis; the Fagus and Liriodendron data were not.
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a “starkly dichotomous” view of ECM versus AM
ecosystems in terms of plant-soil feedbacks or
other aspects of nutrient cycling and turnover
(10). ECM likely exhibit a range of saprotrophic
physiologies and therefore are not a homoge-
neous functional group accessing soil organic N
for plant use, as conceived by Terrer et al.
5) The hypothesis under consideration was

inspired in part by the difference in response
between Duke and ORNL FACE experiments
(11). The element of time is paramount in inter-
preting these experiments. A sustained biomass
response of Pinus taeda (ECM) was observed at
Duke, supported by increased N uptake, which
was attributed to soil “priming” such that N
availability increased (11). In the L. styraciflua
(AM) stand at ORNL, an initial stimulation of
biomass increment disappeared and was re-
placed by increased fine-root production, which
supported increased N uptake, as well as in-
creasing soil C rather than biomass C (12). Event-
ually, however, there was not enough available
N to sustain the plant response at ORNL [i.e.,
progressive N limitation (13)]. The mechanism
attributed to the ECM system at Duke FACE of
accelerated release of organic C and N from
otherwise recalcitrant pools is not a mechanism

that could be sustained indefinitely. Rather than
being indicative of a fundamental difference of
these two forests in responsiveness to eCO2, my-
corrhizal type, along with other differences in leaf
and root turnover rates, is likely to be related
more to the timing of N limitation during forest
development.
Terrer et al. concluded their analysis with a

plea to include mycorrhizal type in large-scale
models so that different ecosystems could be
characterized as to their potential CO2 response.
Given our concerns in how this analysis was con-
ducted and interpreted, we think that this rec-
ommendation is missing a robust foundation.
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