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Abstract

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated

CO2 (eCO2) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in

the global C cycle. We evaluated 6 years (2007–2012) of flux-derived GPP data from the Prairie Heating and CO2

Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a

light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was

extended by modeling maximum photosynthetic rate (Amax) and light-use efficiency (Q) as functions of soil water, air

temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales.

The model fits the observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that

compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6-year

GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during

spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air

temperature (Tairant) and vapor pressure deficit (VPDant) effects on Amax (over the past 3–4 days and 1–3 days,

respectively) were the most significant predictors of temporal variability in GPP among most treatments. The impor-

tance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate;

we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects.

Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark

against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data-driven GPP estimates suggest

that they could be useful semi-independent data streams for validating TBMs.
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Introduction

Gross primary production (GPP) is the largest flux in

the global carbon (C) cycle, representing the gross

amount of C removed from the atmosphere by plants

via photosynthesis at the ecosystem scale (Chapin et al.,

2006). GPP represents the input of C into the terrestrial

biosphere, which plays an important role in determin-

ing the magnitudes of the flows and stores of C within

plants and soil (Williams et al., 2005; Beer et al., 2010).

Despite its importance, there remains large uncertainty

in global model projections of future GPP – both glob-

ally and regionally – under anticipated future levels of

CO2 and warming (Arora et al., 2013; Richardson et al.,

2013), and there is an urgent need to determine the

causes of these uncertainties (Friedlingstein et al., 2014).

Improved accuracy of these model predictions is critical

in determining whether the terrestrial biosphere is

likely to be a future sink or source of C.

While the responses of net primary production (NPP)

to elevated CO2 (eCO2) are well studied, less work has

directly evaluated GPP, partly because it is not directly

measurable. The few studies that exist on the singular

effect of eCO2 on GPP report a positive effect. For

example, Wittig et al. (2005) found a ~80% stimulation

of GPP for Populus trees growing under eCO2 over a 3-

year period. Likewise, using 3 years of leaf-level photo-

synthesis data, Luo et al. (2001) found a ~40% increase

in modeled GPP under eCO2. A stimulation of NPP

under eCO2 suggests a stimulation of GPP if it is

assumed that NPP is proportional to GPP (Waring

et al., 1998; Williams et al., 2005). A ~20% increase in

NPP under eCO2 is expected in mid-latitudes (Luo

et al., 2006), and this should translate into increased

GPP. However, semiarid grasslands exhibit large varia-

tion in NPP responses to eCO2 (0–100%), which is pri-

marily driven by spatial and temporal precipitation

variability (Polley et al., 2013). The stimulation of NPP

by eCO2 has been shown to be suppressed if the ecosys-

tem is nitrogen limited (Norby & Zak, 2011). GPP

should also be affected by responses of leaf-level photo-

synthesis at light saturation (Asat), which increases with

eCO2 in trees (~45%), grasses (~35%), shrubs (~20%),

and crops (~35%) (Ainsworth & Long, 2005), but scaling

from leaf-level Asat to ecosystem-level GPP is fraught

with uncertainties (Arp, 1991; McLeod & Long, 1999;

Morgan et al., 2001).

Warming affects GPP directly through the effect of

temperature on leaf photosynthesis, and indirectly via

alterations in nitrogen mineralization and water avail-

ability (Cox et al., 2000; Ciais et al., 2014). As with eCO2,

a stimulation of NPP under warming suggests a stimu-

lation of GPP if it is assumed that NPP is proportional

to GPP (Waring et al., 1998; Williams et al., 2005).

Terrestrial biosphere models (TBMs) predict a reduc-

tion in NPP with long-term warming; if warming

reaches 3–5 °C by 2100 under a high CO2 emissions sce-

nario (Collins et al., 2013), global terrestrial NPP may

decrease by 15–100% (10–60 PgC yr�1) (Roy et al., 2001;

Friedlingstein et al., 2006; Sitch et al., 2008). Retrospec-

tive analyses also show a negative effect of warming on

NPP, such as a ~9% decrease in global NPP between

1980 and 2002, which offset the CO2 fertilization effect

(Magnani et al., 2007). However, the magnitude of the

GPP and NPP responses to warming varies among

biomes, with northern latitudes expected to exhibit the

largest increases (Landsberg & Waring, 1997; Piao et al.,

2008; Rustad, 2008). At the site level, a meta-analysis of

32 separate warming experiments found a positive

effect of warming on NPP for tundra sites, but no effect

for temperate forest and grassland sites (Rustad et al.,

2001). At the regional level, a surface temperature

increase of 2 °C between 1988 and 2008 in northern lati-

tudes stimulated GPP during the spring and fall

(Landsberg & Waring, 1997; Piao et al., 2008; Rustad,

2008).

TBMs assume that the interactive effect of eCO2 and

warming is positive (Norby & Luo, 2004; Luo et al.,

2008). Field data from climate change experiments sup-

port this for certain years (Dukes et al., 2005), but over

multiple years there is growing evidence that the posi-

tive interactive response does not exist or is not as

strong as models suggest (Shaw et al., 2002; Dieleman

et al., 2012). The effects of eCO2 and warming –
whether singular or combined – may be dependent

upon precipitation inputs in water-limited ecosystems

(Knapp & Smith, 2001; Fay et al., 2003; Huxman et al.,

2004; Schwinning et al., 2004). For example, an experi-

ment in a mixed C3/C4 semiarid grassland found that

aboveground NPP was increased by ~80% when annual

precipitation was delivered in a few, large rain events

compared with more frequent, smaller events (Heisler-

White et al., 2008). Recent work has generalized this by

considering the effect of past or antecedent conditions

on primary production. For example, Ogle et al. (2015)

found that event size and antecedent precipitation

explained 75% of the variation in aboveground NPP

(ANPP) in the same semiarid grassland. Likewise, ante-

cedent soil water content was a significant predictor of

ANPP in a tall grass prairie (Sherry et al., 2008).

We identified three major knowledge gaps with

regard to the response of GPP to climate change. First,

few climate change experiments have investigated the

combined effects of eCO2 and warming on primary

production (Luo et al., 2008). Second, most of the litera-

ture on the ecosystem responses of primary productiv-

ity to eCO2 and warming are based on measurements

of NPP (as highlighted above); very few evaluate GPP,
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yet this is critical for constraining predictions of C cycle

responses to climate change (Norby & Luo, 2004).

Third, while analyses of climate change experiments

often report that treatment effects are contingent upon

background climate conditions (e.g., Morgan et al.,

2011), the effects of antecedent climate conditions are

often not evaluated.

To address these knowledge gaps, we measured and

analyzed GPP for 6 years as part of the Prairie Heating

and CO2 Enrichment (PHACE) Experiment. The experi-

ment consisted of six treatments, four of which were

applied in a full factorial design with CO2 (ambient vs.

elevated) and temperature (ambient vs. warming), and

two others involved deep and shallow irrigation

applied under ambient CO2 and temperature. We drew

upon this 6-year dataset to address three questions: (i)

How does GPP respond to the main and interactive

effects of eCO2 and warming in the context of variable

precipitation? (ii) What environmental and meteorolog-

ical factors (e.g., soil water content, antecedent condi-

tions) govern potential responses of GPP to climate

change? Finally, we illustrate how our modeling

approach can be applied to generate more realistic data

products for informing TBMs, and we ask: (iii) How

does the inclusion of antecedent conditions affect the

magnitude and uncertainty in such GPP data products?

Accurate estimation of uncertainty is essential in model

evaluation exercises, and we provide a full accounting

of uncertainty in our analyses.

Materials and methods

Site description

The PHACE site is situated near Cheyenne, Wyoming at an

elevation of 1930 m, with a semiarid, temperate climate.

Thirty-year mean annual temperature is 8.3 °C and precipita-

tion is 378 mm, with ~75% falling during the growing season

(Zelikova et al., 2015). The vegetation is a mixed-grass prairie,

dominated by two C3 grasses, western wheatgrass (Pascopy-

rum smithii (Rydb.) A. L€ove) and needle-and-thread grass (Hes-

perostipa comata Trin and Rupr), and the C4 perennial grass blue

grama (Bouteloua gracilis (H.B.K.) Lag). Live plant cover ranges

up to 70% of ground area (Zelikova et al., 2015), and roots

extend to 40 cm with 75% of root biomass occurring above

15 cm depth (Carrillo et al., 2014). The soil is a fine-loamy,

mixed, mesic Aridic Argiustolls, and biological crusts are not

present (Bachman et al., 2010).

Experimental design

The PHACE experiment was set up as an incomplete factorial

design consisting of six treatments and five replicate plots

(3.4 m in diameter) per treatments (Morgan et al., 2011). Four

of the six treatments – abbreviated as ct, cT, Ct, CT – are a full

factorial design of atmospheric CO2 (ambient at 380–400 ppm

[abbreviated as ‘c’] versus elevated at 600 ppm [‘C’]) and

warming (no warming [‘t’] versus heated by 1.5 °C in the day-

time and 3.0 °C in the nighttime [‘T’]). The increase in atmo-

spheric CO2 (600 ppm) for the elevated CO2 plots (Ct and CT)

was achieved using Free Air CO2 Enrichment (FACE) technol-

ogy (Miglietta et al., 2001). Warming was simulated (cT and

CT) by applying a ceramic heater system using a propor-

tional–integral–derivative (PID) feedback loop (Kimball,

2005).

The final two treatments (cts and ctd) involve irrigation

applied to ambient CO2 and no warming plots (shallow

[‘s’] or deep [‘d’] irrigation). In the context of the PHACE

study, the main aim of the irrigation treatments was to

test the hypothesis that responses to eCO2 are indirectly

due to increases in soil water. As such, water was applied

to the cts and ctd plots in an effort to increase their soil

water contents to match that of the Ct treatment. In the

cts treatment, irrigation was applied when soil moisture

fell below 85% of Ct at the 5–25 cm depth: In 2007, five

18-mm precipitation events were applied (totaling 90 mm);

during 2008–2011, three 21-mm events per year were

applied (totaling 63 mm each year), and in 2012, four 65-

mm events (totaling 260 mm) were applied. The total

amount of water applied to the ctd plots was the same as

the cts plots, but water was only added twice per year

(spring and fall), in approximately equal amounts.

Data description

All data were measured in the field from 2007 to 2012,

and consisted of GPP (lmol C m�2 s�1), associated air tem-

perature (Tair; °C), volumetric soil water content (SWC;

m2/m2), ecosystem phenology (‘greenness’; %), photosyn-

thetically active radiation (PAR; lmol quanta m�2 s�1),

aboveground plant nitrogen content (N; g m�2), and rela-

tive humidity (RH; %); vapor pressure deficit (VPD; kPa)

was computed from Tair and RH. GPP data were obtained

indirectly as the difference between measurements of net

ecosystem exchange (NEE; lmol C m�2 s�1) and ecosystem

respiration (Reco; lmol C m�2 s�1) that were made within

2 min of each other. NEE was measured using a 0.1-m3

canopy gas exchange chamber by measuring the rate of

change of CO2 concentration for 1 min (Jasoni et al., 2005;

Bachman et al., 2010). Reco was measured immediately

afterward and in exactly the same way as the NEE one,

except that an opaque cover was placed over the chamber

to eliminate light. Midday measurements were made on a

total of 88 days over six growing seasons (May through

September), and measurement days were typically sepa-

rated by 2–4 weeks. Additional measurements of NEE and

Reco, and thus GPP, were made every 6 weeks at five mea-

surement times per day in each plot (nominal

times = 04:00, 09:00, 12:00, 16:00, and 21:00). More details

on the methods can be found in Bachman et al. (2010) and

Pendall et al. (2013). See Ryan et al. (2015) for descriptions

of the environmental data and the gap filling employed to

estimate missing covariate data on certain days and hours.

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3092–3106
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Data synthesis and modeling

We fit a nonlinear mixed-effects model to the GPP data to

quantify how GPP varied among the experimental treatments

at the season, annual, and multi-annual scales. The goal of this

analysis is twofold: (i) to quantify the combined effects of the

categorical treatment effects and the time-varying concurrent

and antecedent environmental effects (addressing questions 1

and 2), and (ii) to estimate GPP on nonmeasurement times,

while accounting for different sources of uncertainty, thus

allowing us to gap-fill the GPP dataset and produce estimates

of cumulative GPP fluxes (addressing question 3).

Given the distributional properties of the observed GPP

data (GPPobs), we assumed that GPPobs followed a normal dis-

tribution. Thus, observation i (i = 1,. . ., 2456):

GPPobs
i �Normalðli; r2tðiÞÞ ð1Þ

l is the mean or predicted GPP value, r2 represents the

observation variance, and t(i) indicates treatment t (t = 1, 2,

. . ., 6 treatment levels) associated with observation i. We

employ a semi-empirical model for the mean GPP, l, based on

the rectangular hyperbola light-response model (Thornley,

1976; Landsberg & Waring, 1997; Falge et al., 2001; Desai et al.,

2008), which we adapted to include the effect of atmospheric

CO2 concentration (Acock et al., 1976). We lack sufficient data

to parameterize more complex or mechanistic models (E.g.

Farquhar et al., 1980). However, the light-response or radia-

tion-use efficiency type model has been frequently applied, in

various formulations, to ecosystem-level GPP and NPP flux

data (see above references), and thus, there is good precedence

for using it here. The model for l is:

li ¼
QiPARiAmaxi Ci

QiPARi þ Amaxi Ci
ð2Þ

PARi is the measured PAR (lmol m�2 s�1); Qi

(lmol CO2 lmol�1 quanta) is the quantum yield or canopy

light-use efficiency (i.e., the slope of the light response curve

at PAR = 0); Amaxi (lmol C m�2 s�1) is the maximum CO2

uptake rate of the canopy (maximum GPP) at light saturation.

Ci ¼ cj exp CO2i � CO2j

� �
accounts for variation in atmo-

spheric CO2 relative to the mean observed atmospheric [CO2]

(CO2j ) in the ambient (j = 1; ct, cT, ctd, cts) and elevated (j = 2;

Ct, CT) CO2 plots, where CO2i is the measured atmospheric

[CO2], and the parameter cj describes the effect of deviations

from the mean concentration (CO2j = 376 ppm and 572 ppm

for j = 1 and j = 2, respectively). An exponential function is

applied to the deviations to ensure Ci > 0.

To capture potential temporal changes in the GPP response,

we modeled Q and Amax as functions of various biotic (green-

ness and N) and abiotic (SWC, Tair, and VPD) factors at both

current and antecedent (described in detail in the section

below) timescales. It is well known that plant photosynthesis

is partly governed by leaf N content (Williams et al., 1996;

Landsberg & Waring, 1997; Magnani et al., 2007) and tempera-

ture (Farquhar et al., 1980; Bernacchi et al., 2001) via their

effects on enzyme-mediated reactions. VPD also plays an

important role via its effect on stomatal conductance, which in

turn controls photosynthetic rates (Collatz et al., 1991; Medlyn

et al., 2011). Furthermore, vegetation greenness is expected to

correspond to GPP; for example, satellite estimates of GPP are

inferred from the light reflectance of the vegetation, which

describes greenness of the vegetation. To ensure that Amax is

positive, we modeled Amax on the log scale, and to constrain Q

between 0 and 1, we modeled Q on the logit scale. For exam-

ple, we modeled log (Amax) as a linear function of the afore-

mentioned current and antecedent (subscript = ant) biotic and

abiotic drivers, with parameters that vary by treatment t

(t = 1, 2, . . ., 6) associated with observation i:

logðAmaxi Þ ¼ a0;tðiÞ þ a1;tðiÞSWCi þ a2;tðiÞVPDi

þ a3;tðiÞTairi þ a4;tðiÞSWCant;i þ a5;tðiÞVPDant;i

þ a6;tðiÞTairant;i þ a7;tðiÞNi þ a8;tðiÞGreennessi

þ a9;tðiÞDGreennessant;i þ interactionsþ �tðiÞ;pðtðiÞÞ
ð3Þ

et,p represents a plot (nested in treatment) random effect, and

p(t(i)) indicates plot p associated with treatment t and observa-

tion i (p = 1, 2, 3, 4, 5 for each treatment). DGreennessant
represents the antecedent rate of change of greenness;

when greenness is increasing, DGreennessant > 0, and when

leaves are senescing, DGreennessant < 0. We define ‘interac-

tions’ in Eqn (3) to potentially include all two-way interactions

between the covariates indicated in Eqn (3). Preliminary

analysis identified five-two-way interactions (of 36 possible)

that were most important for understanding GPP (see

Appendix S1 for details of preliminary analysis), including

Tair 9 Tair, SWCant 9 Tairant, SWCant 9 VPDant,

SWC 9 SWCant Tair 9 Tairant, and VPD 9 Tair; these five

interactions represent the ‘interactions’ term and are assigned

interaction effects parameters a10,t – a15,t, respectively.

Including these interactions is further justified because: (i)

Tair 9 Tair accounts for a potential peaked temperature

response; (ii) SWCant 9 Tairant indicates the seasonality of

moisture availability; (iii) SWCant 9 VPDant indicates differen-

tial below- versus aboveground water stress effects; and (iv)

previous studies have reported important interactions between

current and antecedent factors. Regarding the last point, C

fluxes are likely to respond differently to a rain event (increase

in current SWC) that occurs during a dry period (low SWCant)

compared with during a wet period (high SWCant) (Arp, 1991;

Cable et al., 2013; Barron-Gafford et al., 2014; Ryan et al., 2015),

thus reflecting potential hysteresis patterns (Barron-Gafford

et al., 2011; Oikawa et al., 2014).

The function for logit (Q) is the same as for log (Amax)

except that: (i) there is no N term because N is primarily

expected to affect the amount of RuBisCO in the photosyn-

thetic tissues, which in turn primarily limits Amax (Reich et al.,

2009); and (ii) it has its own nested plot random effects and

treatment-specific effects parameters (b0,. . ., b14) (see Table 3

for a summary of model parameters).

Quantification of antecedent drivers

We characterized and quantified antecedent covariates follow-

ing the stochastic antecedent modeling (SAM) framework

described by Ogle et al. (2015); examples of practical imple-

mentation are given by Ryan et al. (2015), Cable et al. (2013),

and Barron-Gafford et al. (2014). Traditional methods of
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defining antecedent variables often compute a deterministic

average of the variable over a fixed past time period. SAM is

different in that it allocates parameters (‘importance weights’)

to specific periods in the past, thus enabling quantification of

the relative importance of the variable at those different past

times. Following Cable et al. (2013) and Ryan et al. (2015), we

allowed GPP to be influenced by Tair and VPD over daily

timescales, and by SWC and greenness over weekly time-

scales. In general, we describe the antecedent variable (Xant)

associated with observation i as:

Xant;i ¼
XNperiods

k¼1

WXk;tðiÞ
�XtpðiÞ�kþ1;pðtðiÞÞ ð4Þ

where X = VPD or Tair, �Xis the 24-h mean for a particular day

or time period, k is the time lag into the past (for Nperiod = 7

time steps) such that when k = 1, �X is the observed 24-h mean

that occurred during tp(i), the time period associated with

observation i; again, t(i) and p(t(i)) are the treatment (t = 1,..,6)

and plot (p = 1,..,5 per treatment) associated with observation

i. WX are the weight parameters to be estimated. The expres-

sion for SWCant is similar to Eqn (4) except that �X is the 7-day

mean for a particular week such that tp denotes the week

associated with each observation and k denotes the time (week

scale) lag (Nperiods = 6); as done in Ryan et al. (2015), we allo-

cated a separate weight for each of the first few weeks in the

past (k = 1, 2, 3, 4), the fifth (k = 5) weight to past weeks 5–6,
and the sixth (k = 6) weight to past weeks 7–10. We made a

slight modification to calculate DGreennessant:

DGreennessant;i ¼
XNperiods

k¼1

WXk;tðiÞ
�XtpðiÞ�kþ1;pðtðiÞÞ � �XtpðiÞ�k;pðtðiÞÞ

� �

ð5Þ
where �X, i, k, t, tp, and p are as defined previously for the

weekly scale covariates. Like SWCant, the time periods are on

a weekly scale, but k = 1, 2, 3, and 4 correspond to the past

week, 2 weeks ago, 3 weeks ago, and 4 weeks ago

(Nperiods = 4), respectively.

We refer to the model described above as the ‘main’ model.

We also implemented an ‘alternative’ model that excludes all

antecedent covariates from the Q and Amax functions, as

defined in Eqn (3), to evaluate the importance of including

antecedent effects. The alternative model (no antecedent

effects) is more similar to the types of models that are often

applied for partitioning eddy-covariance NEE data into its

GPP and ecosystem respiration components, such as those

described in the review paper by Desai et al. (2008).

Model implementation and assessment

We implemented the model within a hierarchical Bayesian

framework (see Appendix S2 for details) using the software

package JAGS (Plummer, 2003), which uses Markov chain

Monte Carlo (MCMC) to sample from the joint posterior of the

model parameters. Depending on the model (main or alterna-

tive model), we ran three parallel chains for 100 000–200 000

iterations each. After discarding the first 50% of iterations as

‘burn-in’, we thinned the chains by 100 to reduce within-chain

autocorrelation and to reduce storage requirements; conver-

gence was assessed using the Brooks–Gelman–Rubin diagnos-

tic tool (Gelman et al., 2013). This produced roughly 3000

independent samples from the posterior distribution for each

parameter, which were summarized by their posterior means,

central 95% credible intervals (CIs) defined by the 2.5th and

97.5th percentiles, and Bayesian P-values (Gelman et al., 2013).

We assessed the performance of the model by comparing

predicted GPP versus observed GPP. We used the coefficient

of determination (R2) as an informal measure of model accu-

racy. A limitation with solely using R2 is that it does not detect

when overfitting occurs, the phenomenon by which R2 can

increase with greater model complexity (more parameters). To

overcome this, we also calculated two other commonly used

model assessment diagnostics: the deviance information crite-

rion (DIC) and the posterior predictive loss (PPL). Each of

these statistics is the sum of a goodness-of-fit term and a

model complexity (penalty) term that describes the effective

number of parameters (Gelfand & Ghosh, 1998; Spiegelhalter

et al., 2002). One model is more desirable over another if it has

a lower DIC and lower PPL. Using these two indices, we com-

pared our main model with the alternative model.

Estimates of seasonal, annual, and 6-year GPP

Our Bayesian approach to analyzing the GPP data also pro-

vides a framework for predicting GPP for time periods for

which it was not measured. Each of the fitted models (main

and alternative) was subsequently applied on an hourly time

step during the March–October period (we assumed GPP = 0

during other months due to the lack of vegetation during

these winter months) for 2007–2012, and for every plot using

each of the 3000 parameter sets sampled from the posterior

distribution. The model simulations were implemented using

Eqns (2–5) as well as all measurements of plot-level data

(daily SWC, daily greenness, hourly Tair, hourly VPD, and

annual N). The resulting hourly GPP predictions were

summed within each season, each year, and across all years

for each of the 3000 model executions, yielding posterior pre-

dictive distributions of seasonal (spring [March–May], sum-

mer [June–August], fall [September–October]), annual

(March–October), and 6-year GPP estimates. These distribu-

tions account for both model uncertainty (e.g., lack of fit) and

parameter uncertainty.

Comparisons to GPP simulated from 12 terrestrial
biosphere models

The data-driven predicted GPP values could serve as impor-

tant ‘data products’ for informing and evaluating terrestrial

biosphere models (TBMs). Importantly, the Bayesian proce-

dure explicitly quantifies uncertainty in such data products.

To exemplify the importance of quantification of data product

uncertainty, we considered two different types of data prod-

ucts: (i) 6-year cumulative GPP from the main and alternative

models as described in the previous subsection, and (ii) the

percent change in the 6-year GPP under warming (cT) and

eCO2 (Ct) relative to the control (ct). As with the first, the
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second data product was computed using Monte Carlo simu-

lations based on the 3000 posterior estimates of the 6-year

GPP (see Appendix S3 for description of how both data prod-

ucts were computed). The 6-year GPP and GPP responses pre-

dicted from 12 TBMs were compared against the

corresponding data products. The TBMs included: six land

surface models (CABLE, CLM4.0, CLM4.5, ISAM, OCN, and

ORCHIDEE); three global dynamic vegetation models (JULES,

LPJ-GUESS, and SDGVM); and three ecosystem models (DAY-

CENT, GDAY, and TECO); see Table S1 in the supplementary

material for a description of the TBMs. The TBMs were not

calibrated to the site using response data, but they were pro-

vided optional data or parameter values (e.g., Vcmax, specific

leaf area, rooting depth, soil texture) representative of the site.

Models were also forced with site meteorological data cover-

ing the 6 years of the experiment (see Appendix S4 for

details).

As a result of the TBMs not being rigorously calibrated

against the PHACE data, there was no expectation that the

TBM responses would match or be close to the expected

PHACE responses. The purpose of comparing our ‘GPP data

product’ against the TBM output was to illustrate how our

data product could be used to inform the TBMs. Our analysis

represents a more flexible and potentially more rigorous

method for ‘gap-filling’ missing data – compared to algo-

rithms that are currently used to gap-fill, for example, eddy

flux data – and we show how it can be used to generate GPP

estimates (data products) over the course of the experiment.

Results

Assessment of model performance

Our main model was able to explain a large portion of

the variation in the hourly GPP observations (overall R2

of 0.79). However, the accuracy of the GPP predictions

varied among the treatments (Fig. 1), with treatment-

specific fits: cT (R2 = 0.86), ctd (R2 = 0.81), ct

(R2 = 0.80), cts (R2 = 0.77), CT (R2 = 0.77), and Ct

(R2 = 0.67). For all treatments, the model tends to

slightly underpredict GPP at high values, and while

Fig. 1 Observed versus predicted GPP for each treatment. The predicted values were obtained from the main model (with antecedent

effects) and are represented by the posterior means and central 95% credible intervals of replicated observations (Gelman et al., 2013) of

GPP, based on Eqns (1) and (2). The solid, diagonal gray line represents the 1:1 line; the dashed line represents the best fit line. Treat-

ment codes involve combinations of: c (ambient CO2), C (elevated CO2), t (no warming), T (warming), d (deep irrigation), or s (shallow

irrigation).
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this bias is minimal, it is more pronounced in the Ct

treatment (Fig. 1). That is, among a number of treat-

ments, there are a handful of measurements that are

significantly higher than the modeled values, and these

seem to mainly be concentrated on 1 or 2 days during

the fall (Fig. S5).

The alternative model, which excluded all of the

antecedent covariates, resulted in a poorer fit (R2 = 0.58

overall, R2 ranged from 0.40 to 0.67 among treatments)

and greater bias (more severe underprediction of GPP

at high values) (Fig. S1). The more robust DIC and PPL

measures also strongly indicated much better model

performance for the main model compared to the alter-

native model (DIC = 12 690 and PPL = 45 852 for the

main model, with DIC = 13 903 and PPL = 80 067 for

the alternative model).

Phenology of grassland carbon uptake and its relation to
precipitation

The time series of predicted GPP revealed high interan-

nual variability (Fig. 2). For example, for the control treat-

ment (ct), predicted daily GPP reached a maximum

around 10 g C m�2 day�1 for 2009 and 2010, which was

double the predicted maximum in 2012

(~5 g C m�2 day�1; Fig. 2a). Within years, bimodal peaks

in GPP were predicted in 2007, 2008, 2011, and 2012 in

response to spring and late-summer precipitation inputs.

Treatment effects on GPP

Over the entire experimental period (2007–2012), the

largest and most statistically significant increases in

GPP relative to the control treatment (ct) occurred

under warming (29% increase; Table 1 and Fig. 3b;

P = 0.02 for ct vs. cT), eCO2 (26%; Table 1 and Fig. 3b;

P = 0.07 for ct vs. Ct), and deep irrigation (28%; Table 1

and Fig. 3b; P < 0.01 for ct vs. ctd).

At the annual timescale, relative to ct, annual GPP

increased under eCO2 (Ct) in 2007, 2008, 2011, and 2012

(Fig. 3a and Table 1; ct vs. Ct, P = 0.007, 0.09, 0.02 and

0.009, respectively). Warming (cT) also stimulated

annual GPP in 2007, 2008, 2010, and 2011 (Fig. 3a and

Table 1; ct vs. cT, P = 0.006, 0.04, 0.09, and 0.005 respec-

tively). There is some evidence that the combination of

eCO2 and warming (CT) enhanced GPP in 2007 and

2011 (Fig. 3a and Table 1; ct vs. CT, P = 0.09 and 0.08,

respectively). The large increase in GPP under deep

irrigation (ctd) was reflected across individual years,

with four showing statistically significant increases of

28–61%. In the absence of warming, annual GPP under

eCO2 (Ct) was similar to annual GPP under shallow

irrigation (cts) for all years (Table 1; Ct vs. cts, P > 0.18

for any individual year).

Seasonal differences in the treatment effects emerged.

The 29% overall increase in GPP under warming (cT)

relative to the control (ct) during all 6 years was

Fig. 2 Time series of predicted gross primary production (GPP) for (a) daily GPP for the control (ct) treatment, where the grey bars

denote the weekly precipitation at the site, and (b) hourly GPP for days of the year 140–215 for 2009 for the ct treatment (observed GPP

is denoted by *). In both (a) and (b), the black line represents the posterior mean of the daily (a) or hourly (b) predicted GPP, and the

grey error bars indicate the 95% credible intervals. The data points and associated error bars in panel (b) represent the mean and range

of GPP observations made on measurement days and across at least four of the five plots of the control treatment.
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primarily driven by enhanced spring productivity

(Fig. 3b, black-filled portion of cT bars; Table 1, ct vs.

cT: 129% increase, P = 0.001). During the summer,

there was on average an 11% decline in GPP under cT

(Table 1, ct vs. cT, P = 0.15), which is consistent with

Pendall et al. (2013) who used linear regression and lin-

ear interpolation to estimate April–September GPP

sums from data. Although the CO2 effect was only sta-

tistically significant (P < 0.09) for four of the 6 years,

GPP increased by 124% under eCO2 (Ct) during fall.

The spring cT and fall Ct GPP estimates were the only

treatment-by-season combinations that were always

significantly different (P < 0.03) from the correspond-

ing season-level ct estimates, for all years (Table 2,

rows 1 and 3). Compared with spring and summer,

GPP also increased the most during fall under eCO2

and warming (ct vs. CT: 42% increase, P = 0.03), deep

irrigation (ct vs. ctd: 68% increase, P = 0.002), and shal-

low irrigation (ct vs. cts: 66% increase, P = 0.008)

(Table 1).

Importance of current and antecedent conditions for
understanding treatment effects on GPP

Including antecedent terms in the submodels for Amax

and Q (see Eqn (3)) resulted in decreases in the pre-

dicted 6-year GPP relative to the alternative model,

with the greatest reductions occurring for the control

treatment (by 12%, P = 0.14), the eCO2 9 warming

treatment (by 20%, P = 0.04), and the deep irrigation

treatment (by 14%, P = 0.05). Furthermore, 34 of the 36

treatment 9 year combinations corresponded to a

decrease in annual GPP of between 1% and 42% for the

main model versus the alternative model (Tables S3a,

S3b, S3c). Both Amax and Q were not significantly

affected by concurrent covariates (SWC, VPD, Tair,

greenness, and N), for most or all treatments, depend-

ing on the covariate (Table 3). Conversely, the main

effect of two of the three antecedent covariates (VPDant

and Tairant) on Amax was significant for the majority of

treatments (Fig. 4a, b; Table 3). The most important

Table 1 Percent differences in predicted annual GPP for key pairs of treatments. Percentages are given for each year, for the 6-year

total (2007–2012), and for the 6-year seasonal totals (spring, summer, fall)

2007 2008 2009 2010 2011 2012 2007–2012
2007–2012
(Spring)

2007–2012
(Summer)

2007–2012
(Fall)

Warming effect (cT – ct) 40** 30* 12 27(†) 50** 29 29* 129** �11 56**
Elevated CO2 effect (Ct – ct) 47** 31(†) �5 7 49 63** 26(†) 47(†) 1 124**
Warming and CO2 effect (CT – ct) 28(†) 8 �11 �3 24(†) �1 6 20 �5 42*
Deep irrigation effect (ctd – ct) 30* 30** 15 1 57** 61** 28** 31 19* 68**
Shallow irrigation effect (cts – ct) 29(†) 9 �10 �9 25(†) 41 9 2 2 66**

Asterisks denote the Bayesian P-value for the difference: P ≤ 0.01 (**), 0.01 < P ≤ 0.05 (*), and 0.05 < P ≤ 0.1 ((†)). See Fig. 1 legend

for treatment codes.

Fig. 3 Predicted annual (growing season; March–October) and seasonal GPP for each treatment by (a) each study year and (b) summed

across all 6 years. The overall height of each bar denotes the posterior mean and the error bars represent the central 95% credible inter-

vals of the (a) annual GPP or (b) 6-year GPP. The totals represented by each bar are broken down by seasonal totals according to the

shading. See Fig. 1 legend for treatment codes.
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predictors for Q involved the SWCant 9 Tairant and

SWCant 9 VPDant interactions, which were significant

for four and three of the treatments, respectively

(Fig. 4c, d; Table 3). Although the direction of the

VPDant (for Amax), Tairant (Amax), SWCant 9 Tairant (Q),

and SWCant 9 VPDant (Q) effects was consistent for the

vast majority of treatments (Table 3), the magnitude of

the antecedent effects differed among certain pairs of

treatments (Fig. 4a, c, d).

Given that antecedent conditions are important for

understanding GPP, we can evaluate the timescales

over which each variable influences GPP. For SWCant,

the first 2 weeks prior to the GPP measurement were

generally the most important for predicting GPP

(Fig. S2a). For the majority of treatments, Tair experi-

enced 3–4 days prior and VPD from 1 to 3 days prior

tended to be the most important for predicting GPP

(Fig. S2b, c).

Comparison of predicted 6-year GPP with TBMs

When comparing the GPP predictions from our data-

driven analysis with those of 12 terrestrial biosphere

models (TBMs), the 95% credible intervals (CIs) of our

6-year GPP ‘data product’ (whether generated from the

main or alternative model) under the control (ct) and

eCO2 (Ct) treatments are fairly narrow compared with

the range of TBM predictions (Fig. 5a, b). Under the

control treatment, only one of the twelve TBM predic-

tions fell within the 95% CI of the data product if ante-

cedent conditions were included in the calculation of

the data product (Fig. 5a, black cross and error bar).

The number of TBM predictions consistent, or almost

so, with the data product increased to five if antecedent

conditions were not included when computing the data

product (Fig. 5a, gray cross and error bar). Under the

eCO2 scenario, there was greater similarity in the num-

ber of TBM predictions agreeing with the data product

if antecedent versus no antecedent conditions were

included for determining the data product (Fig. 5b).

The TBMs also need to accurately predict the rela-

tive change in GPP under scenarios of environmen-

tal change (e.g., eCO2, warming, or some

combination). We used our GPP analysis framework

to produce a data product of the percent difference

Table 2 Percent differences in predicted seasonal GPP for key pairs of treatments, for selected seasons. Pairs of treatments and

seasons were selected based on the percent change values in the furthest three right columns of Table 1 that were significant (had

asterisks)

2007 2008 2009 2010 2011 2012 2007-2012

Warming effect (cT – ct) for spring 109** 112** 70** 161** 209** 141** 129**

Warming effect (cT – ct) for fall 60** 27 146* 38 127** 97 56**

eCO2 effect (Ct – ct) for fall 100** 46* 263** 281* 268** 461** 124**

eCO29warming effect (CT – ct) for fall 45(†) 7 129 89 90* 93 42*

Deep irrigation effect (ctd – ct) for summer 11 24* 11 -1 55** 27 19*

Deep irrigation effect (ctd – ct) for fall 60(†) 37* 149(†) 38 168** 177(†) 68**

Surface irrigation effect (cts – ct) for fall 44 -2 175** 208* 196** 315** 66**

As in Table 1, asterisks denote the Bayesian p-value for the difference: p ≤ .01 (**), 0.01 < p ≤ .05 (*) and .05 < p ≤ .1 ((†)). See Fig. 1

legend for treatment codes.

Table 3 Summary of posterior estimates and Bayesian P-

values for parameters in the Amax and Q functions (a’s and b’s,
respectively; see Eqn 3)

Dark gray cells indicate P ≤ 0.001, medium gray indicate

0.001 < P ≤ 0.01, light gray indicate 0.01 < P ≤ 0.05, and white

indicate P > 0.05. The signs (+ or �) denote a positive or nega-

tive effect. See Fig. 1 legend for treatment codes.
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in GPP under treatment conditions relative to con-

trol conditions. In contrast to the cumulative GPP

estimates, these percent differences were associated

with high uncertainty, sometimes spanning both

decreases and increases (e.g., Fig. 5c, d). This

resulted in the majority of TBM simulations that are

consistent with this data product (i.e., the TBM pre-

dictions lie within the CIs; Fig. 5c, d), despite the

wide range of TBM predictions. Thus, the data pro-

duct associated with GPP on the absolute scale

(Fig. 3a, b) is more useful for evaluating and inform-

ing TBMs than the data product on the percent

change scale (e.g. Fig. 3c, d).

Discussion

Implications of treatment effects on annual GPP

Annual GPP was predicted to be most stimulated by

elevated CO2 (eCO2, Ct treatment) during the three

Fig. 4 Posterior means (denoted by 9) and central 95% credible intervals (CIs; error bars) for a subset of parameters (covariate effects)

in the Amax function (panels a and b) and the Q function (panels c and d) (Eqn 3, Table 2); these parameters were the most significant

across the greatest number of treatments. The key Amax parameters are associated with antecedent vapor pressure deficit (VPDant) and

antecedent air temperature (Tairant). The key Q parameters are associated with antecedent soil water content (SWCant) and the interac-

tion between SWCant and VPDant. 95% CIs that overlap with zero (dashed horizontal line) indicate a nonsignificant effect. See Fig. 1

legend for treatment codes.

Fig. 5 Comparison of the posterior estimates of GPP (‘data product’; 9 = posterior mean; error bars and horizontal dashed lines = 95%

credible interval) with simulated GPP from 12 terrestrial biosphere models (TBMs; see Table S1 in the supplementary information for

descriptions of each TBM, labeled 1–12). The GPP data products are based on the GPP posterior estimates generated from the main

(black lines and symbols) and alternative (gray lines and symbols) models, where the alternative model is the same as the main model

but without antecedent effects. The metrics shown here are as follows: total 6-year GPP (2007–2012; growing season, March–October in

each year) under (a) the control (ct) treatment and (b) the elevated CO2 (Ct) treatment; and percentage change in total 6-year GPP under

(c) warming (cT) relative to ct, and (d) Ct relative to ct.
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driest years of our study (2007, 2011, and 2012), sug-

gesting that increased GPP under eCO2 could have

resulted from enhanced water-use efficiency (Kelly

et al., 2015). The shallow irrigation (cts) treatment con-

firmed the role of SWC in mediating the GPP responses

to eCO2, consistent with findings in a similar grassland

system (Parton et al., 2012). Moreover, deep irrigation

led to a greater percentage increase in GPP compared

with eCO2 or surface irrigation (Table 1; Fig. 3). This

may reflect the frequency and magnitude in which irri-

gation was applied under ctd (twice, large events) com-

pared with cts (three-five smaller events). Larger, less

frequent precipitation events are expected to stimulate

GPP to a greater extent than smaller, more frequent

events, especially early in the growing season (Lauen-

roth & Sala, 1992; Heisler-White et al., 2008; Ogle et al.,

2015). A prior estimate of annual GPP for this same site

suggested a reduction in GPP by eCO2 in 2009 (Pendall

et al., 2013), but our analysis revealed that a significant

difference existed only during summer of that year

(P = 0.06). We also found that 2009 – the wettest year –
had the highest annual GPP under the control treat-

ment compared with all other study years (Fig. 3,

Tables S2 and S3a), in agreement with Mueller et al.

(2016) who found the highest aboveground biomass in

that year but no eCO2 effect. Other grassland studies

have found no response or a reduction in primary pro-

duction under eCO2 during wet years (Polley et al.,

2013; Hovenden et al., 2014).

Climate change treatments altered the seasonality of

GPP, particularly in spring and fall, as observed for

species- and community-level measurements at the

same site (Reyes-Fox et al., 2014; Zelikova et al., 2015).

Across all years, warming (cT) consistently increased

annual GPP by 12–50%, and this was predominantly

driven by enhanced production during the spring

(Fig. 3a; Tables 1 and 2), when temperature limits con-

strained productivity in this high-elevation system.

Increased annual GPP for all treatments, except cT, rel-

ative to the control (ct) was dominated by increases in

GPP during the fall (Table 1, furthest right column).

The consistency of the statistical significance of this

eCO2 enhancement during fall of most years, as well as

the warming enhancement in spring (Table 2), may be

due to two potential co-occurring mechanisms: (i)

Spring warming directly stimulates earlier snow melt,

photosynthesis, and plant growth (Figs. S4, Luo, 2007;

Sherry et al., 2008; Richardson et al., 2010); and/or (ii)

the SWC in fall is sustained for longer as a result of the

water-saving effects of eCO2 in water-limited systems

like at PHACE (Morgan et al., 2004, 2011; Nowak et al.,

2004; Webb et al., 2012). Our results indicate that these

GPP enhancements in spring and fall may extend the

growing season. For example, in 2008 (an average year

in terms of meteorology), modeled GPP during spring

was consistently higher under warming, although

observed GPP showed only a minor increase

(Fig. S5a, c). In fall, modeled GPP remained signifi-

cantly higher with eCO2 compared with ambient,

which is supported by the observations (Fig S5b, d). In

the warm, dry year of 2012, GPP was significantly

enhanced by warming in spring and by eCO2 in fall

(Table 3). This is partly consistent with observed treat-

ment effects on vegetation greenness (Zelikova et al.,

2015), which was stimulated by the combination of

warming and eCO2 in spring of 2012. Overall, our data

model product provides reasonable support for

hypothesized mechanisms that could extend the grow-

ing season in this cool, dry grassland, although addi-

tional observations in spring and fall could improve

confidence in climate change effects on ecosystem

physiology (Richardson et al., 2010, 2013).

Importance of antecedent conditions for predicting GPP
and evaluating treatment differences

An increasing number of studies recognize the impor-

tance of antecedent conditions in understanding the ter-

restrial C cycle (Gamnitzer et al., 2011; Cable et al.,

2013; Barron-Gafford et al., 2014; Ryan et al., 2015). Our

main model (with antecedent effects) explained 67–86%
of the variation in the GPP data, but the alternative

model (without antecedent effects) only explained 40–
67% of the variation. This difference in the explanatory

power of models that include antecedent conditions

has also been demonstrated for other C flux compo-

nents, including soil respiration (Barron-Gafford et al.,

2014; Ogle et al., 2015), annual aboveground NPP, and

annual tree growth (Ogle et al., 2015). The increased

explanatory power of the ‘antecedent models’ cannot

not be solely explained by the additional parameters

that they introduce given the support conveyed by

model selection indices that penalize for the number of

parameters or model complexity. In particular, our

results suggest that antecedent vapor pressure deficit

(VPDant) and antecedent air temperature (Tairant) were

the most important predictors of GPP, primarily via

their effects on maximum potential GPP (Amax). Antece-

dent SWC (SWCant) interacted with these two factors to

affect light-use efficiency (Q).

The importance of Tairant suggests that accounting

for seasonal changes in air temperature is critical for

obtaining good estimations of Amax in this temperate

grassland, especially in spring when moisture is less

limiting (Lauenroth & Sala, 1992). The importance of

antecedent temperature has been implicated as depict-

ing a temperature acclimation response (Ogle et al.,

2015). However, the general positive effect of Tairant on

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3092–3106

3102 E. M. RYAN et al.



Amax actually indicates that warmer past temperatures

tend to enhance Amax and GPP, regardless of the cur-

rent air temperature which appears to have little impact

on GPP once antecedent temperature is accounted for

(see Table 3). It appears that GPP is more likely to

respond to concurrent changes in soil water (SWC),

and to some extent VPD, compared with temperature.

The importance of concurrent SWC and VPD on GPP

likely reflects stomatal regulation of plant water status,

which in turn is expected to affect photosynthesis, and

thus GPP.

While we would expect GPP to be partly regulated

by short-term (sub-daily) changes in VPD (e.g., via

stomatal control; Oren et al. 1999), we also found that

VPD experienced over the past few days (VPDant)

affects GPP, especially through its influence on Amax. In

particular, high VPD for about 1–3 days prior is pre-

dicted to reduce Amax, across all treatments (Fig. 4a).

While the effect of VPD on stomatal closure and photo-

synthesis is usually treated as being instantaneous due

to tight coupling of stomatal conductance to VPD (Col-

latz et al., 1991), this study suggests that plants may

adjust to VPD over longer timescales. VPD conditions

occurring over the past 1–7 days represent a proxy for

past atmospheric drought conditions (Haddad et al.,

2002), and GPP is likely to be negatively impacted by

cumulative atmospheric drought. Furthermore, the

VPDant effect was more negative under eCO2 (Fig. 4a),

indicating greater sensitivity of stomata (and hence,

photosynthesis) to atmospheric drought, potentially

leading to higher integrated water-use efficiency under

eCO2.

The use of VPD as a predictor of GPP is not new

(Groenendijk et al., 2011), but the proposition that ante-

cedent VPD is an important driver of GPP has not been

previously considered. One possibility is that this effect

is just an artifact of our model because VPD depends

upon Tair, and the VPDant effect could reflect a nonlin-

ear Tairant effect. However, this is unlikely because

although current VPD is highly correlated with current

Tair (r = 0.85), the correlation between the antecedent

covariates (VPDant versus Tairant) is weaker (r = 0.68).

Furthermore, our model contains quadratic Tair (Tair2)

terms in both the Amax and Q functions, and thus, the

shape of the expected response of GPP to Tair (peaked)

should already be accounted for. A more plausible

explanation for the VPDant effect is that stomatal con-

ductance or photosynthesis acclimates to VPD. For

example, Kutsch et al. (2001) found that a decrease in

stomatal aperture in beech trees – implying a decrease

in GPP – was negatively correlated with the previous

month’s mean VPD. The importance of past VPD,

rather than past SWC, prompted the authors to suggest

that plants possess a biochemical memory of past

climatic conditions. Buckley (2005) further suggests that

when VPD exceeds some threshold, water potential can

reach a cavitation threshold, leading to cavitation and

reducing transpiration at any given VPD. If VPD is sub-

sequently reduced, then there is a lag between the

recovery of water potential and embolism repair; the

timescale of this recovery is not well understood but

could contribute to a GPP versus VPD lag. Various

mechanisms have been proposed to explain the stom-

atal behavior versus VPD lag including the hydroactive

feedback hypothesis (Buckley 2016) or delays associ-

ated with abscisic acid (ABA) signaling (Aliniaeifard &

van Meeteren, 2014). Clearly, additional research is

required to establish the generality of a GPP versus

VPD lag (antecedent effect) and to identify underlying

mechanisms related to stomatal behavior, biochemical

acclimation, or other explanations.

Terrestrial biosphere models (TBMs) do not com-

monly account for the potential direct effects of antece-

dent VPD on the physiological components, for

example, through acclimation of photosynthesis (Kattge

& Knorr, 2007; Smith et al., 2015). Nevertheless, soil

water content does contain information on antecedent

VPD, and thus via soil water effects on physiology mod-

els have an indirect ‘memory’ of VPD. However, model

physiological responses to changes in soil water are

empirical and can range from insensitive to too sensitive

(De Kauwe et al., 2014, 2015). First principles methods

that integrate carbon costs and benefits under antecedent

environmental conditions (Mueller et al., 2016; De

Kauwe et al., in press) may provide a robust method to

incorporate acclimation of leaf physiology to antecedent

VPD and soil water into TBMs. Our results highlight

accounting for such an acclimation process, which

directly considers the effect of antecedent conditions,

could improve modeled estimates of photosynthesis.

Implications for the terrestrial carbon cycle

Estimates of global GPP used in the last IPCC report

were calculated from site-level GPP estimates that were

derived by fitting a light response curve to flux tower

NEE data (Beer et al., 2010; Lasslop et al., 2010). The

site-level Amax terms in these analyses were also repre-

sented as exponential functions of current environmen-

tal covariates (Lasslop et al., 2010). If antecedent

conditions (such as VPDant, SWCant, and Tairant) had

been included, our analysis suggests that annual esti-

mates of GPP at semiarid grasslands could have been

improved (Fig. 1 vs. Fig. S1). For other ecosystems or

plant functional types that are less sensitive to drought,

the effect of antecedent meteorological conditions may

be less pronounced. Moreover, our results show that

including antecedent conditions could result in lower
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estimates of cumulative GPP in temperate grasslands

under current climate (by 12%), and especially under a

future, warmer climate and eCO2 (by 20%; see

Table S3c).

Since the early 1990s, global change experiments,

such as Free Air CO2 Enrichment (FACE) studies, have

generated data on responses of key biogeochemical

processes to future environmental conditions. Such

experiments have become invaluable for informing

model forecasts (Piao et al., 2013; Zaehle et al., 2014; De

Kauwe et al., 2014; Walker et al., 2014; De Kauwe et al.,

in press). One of the challenges associated with apply-

ing terrestrial biosphere models (TBMs) to understand

climate change impacts on GPP and the C cycle is lim-

ited access to accurate data products for informing and

evaluating the models. As many data products are

derived from simpler models that are fit to observa-

tional data, it is prudent to account for uncertainty in

such data products because they are not perfect repre-

sentations of the real system. Our hierarchical Bayesian

approach to analyzing the GPP data in the context of a

fairly simple light-response model provides a mecha-

nism for predicting GPP at nonmeasurement time peri-

ods, while accounting for uncertainty in these

predictions. However, we wish to emphasize that the

purpose of the comparison between TBMs and our

‘data product’ (Fig. 5) was not to validate the TBMs,

but rather to evaluate the utility of the data products.

We are confident in our seasonal, annual, and 6-year

cumulative GPP predictions given their relatively nar-

row 95% CIs (e.g., Fig. 5a and 3b). The width of the

intervals, however, did vary among global change

treatments, with the widest intervals (and weakest

model fits [lowest R2s]) occurring for treatments involv-

ing eCO2 (Ct and CT). This suggests that additional

information or improved model structure is required to

obtain more accurate GPP estimates under eCO2. In

general, the tight estimates for cumulative GPP at dif-

ferent timescales suggest that this would be a valuable

(semi-)independent data stream that TBMs can be com-

pared against.

The importance of antecedent environmental condi-

tions on grassland GPP has been highlighted by the

Bayesian model selection procedure used in this study.

Antecedent conditions were key predictors of GPP, in

particular air temperature and vapor pressure deficit of

the past week, and research into the mechanism by

which antecedent Tair and VPD affect GPP would be

an interesting and useful contribution to understanding

the carbon cycle in these grassland ecosystems. Includ-

ing antecedent conditions substantially improved the

fit of the Bayesian model and led to a consistent reduc-

tion in the computed multiyear GPP in this grassland

ecosystem, across the vast majority of treatments and

years. Given the global coverage of grassland ecosys-

tems, understanding the effect of antecedent environ-

mental conditions more broadly is likely to have

implications for our understanding of the global carbon

cycle.
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